Beyond stabilizer codes II: Clifford codes

نویسندگان

  • Andreas Klappenecker
  • Martin Rötteler
چکیده

Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group has an abelian index group. In particular, if the errors are modelled by tensor products of Pauli matrices, then the associated Clifford codes are necessarily stabilizer codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Stabilizer Codes

Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group is given by an extraspecial p-group. Suppose that the abstract error group has an abelian index group, then we show that a Clifford...

متن کامل

Remarks on Clifford Codes

Clifford codes are a class of quantum error control codes that form a natural generalization of stabilizer codes. These codes were introduced in 1996 by Knill, but only a single Clifford code was known, which is not already a stabilizer code. We derive a necessary and sufficient condition that allows to decide when a Clifford code is a stabilizer code, and compile a table of all true Clifford c...

متن کامل

Encoding Subsystem Codes

In this paper we investigate the encoding of operator quantum error correcting codes i.e. subsystem codes. We show that encoding of subsystem codes can be reduced to encoding of a related stabilizer code making it possible to use all the known results on encoding of stabilizer codes. Along the way we also show how Clifford codes can be encoded. We also show that gauge qubits can be exploited to...

متن کامل

Fault-tolerant logical gates in quantum error-correcting codes∗

Recently, Bravyi and König have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically-local circuit and are thus fault-tolerant by construction. In particular, they shown that, for local stabilizer codes in D spatial dime...

متن کامل

Classification of transversal gates in qubit stabilizer codes

Transversal operations in quantum error correction, that is logical gates that are executed by applying a set of gates in parallel, are the most straightforward form of fault-tolerant quantum logic. Naturally, characterizing the set of logical gates that can be implemented transversally for a class of codes is of great importance to fault-tolerant quantum architectures. In this work, we classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2002